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ABSTRACT

The Berkeley Remote Facility (BRF) system -- affected through a system of teletype
‘terminals linked to the LBL computers -- has been used to solve a large number of magnetic-
field problems associated with the design and analysis of superconducting beam-transport

magnets.

The limitations of the BRF system are severe: total storage, 1000; 10 subscripted

variables; no integer or complex arithmetic; no function or subroutine subprograms except

those in its Spartan library; and a pidgin Fortran lanquage.

However, for fully 90% of our

computational work, the low IQ of the BRF has been more than counter-balanced by its being

on-line,

The ragnets we build have a long cylindrical aperture surrounded by arrays of

longitudinal superconducting wires and iron arranged to produce a transverse field of pre-
scribed shape, uniform fields for bending high energy charged particle beams, and quadrupole

fields for focusing.

coefficients of the Taylor's expansion -- the "multipole coefficients".

The field in the aperture is expressed, usually, in terms of the

Point values of the

field vector are also of interest, expecially within the windings, as the magnitude of the

field determines the allowable current.

Many small programs have been developed to analyze

both the two- and three- dimensional fields produced by various kinds of arrays of conductors.
Some programs have the ability to vary a number of geometric parameters automatically in

such a way as to drive the same number of multipole coefficients to zero.

The on-1line feature

is especially handy, as such iterative calculations must often be cajoled into convergence.

INTRODUCTION

Parti¢le accelerators employ electromag-
nets to steer and confine the particle beam.
Recently, considerable attention has been de-
voted to the study and development of supercon-
ducting magnets for accelerators, and for the
experimental beam lines external to the accel-
erators. Superconducting magnets have already
been used on experimental beam lines, but they
have not yet been utilized in an accelerator.
We are currently designing the magnets for a
small accelerator and storage ring, the Exper-
imental Superconducting Accelerator Ring
(ESCAR), which probably will be the first such
machine to employ superconducting main-ring
elements. '

In 1969, the Lawrence Berkeley Laboratory
designed an interactive computer system -- a
somewhat mentally retarded system of quite
limited capzbility, but one that was willing
and eager -- called the BRF (Berkeley Remote
Facility). Since the inception of that system,
I have used it almost to the exclusion of LBL's
sophisticated-but-clumsy batch-processing
system for solving the various magnet engin-

eering problems I have encountered.

While there are many kinds of engineering
problems associated with superconducting mag-
nets, I will confine the discussion to the pre-
diction of the magnetic fields produced by
the kinds of superconducting magnets used in
accelerators, and the inverse problem of de-
signing a magnet to produce a particular mag-
netic field shape.

THE BRF SYSTEM

The BRF system is a mini-computer sub-
set of the Lawrence Berkeley Laboratory CDC
6600/7600 complex. A Teletype terminal
serves as the input/output device, and
operation is interactive. The programing
language is a pidgin Fortran. A1l arith-
metic is done in floating point. Singly or
doubly subscripted arrays can he specified;
the maximum nunber of words that can be
stored in arrays is 1000. Only 10 subscript-
ed variables may be used, The maximum num-
ber of variable names, including simple
variables, subscripted variables, and num-
erical constants, is 60. Input and output
formats are fixed. Jumps can be accomplish-
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XX statements. Statement functions and
subroutines are not permitted, with the
exception of two library subroutines: one
for matrix multiplication, the other for-
matrix inversion. Both are limited to
matrices of size 10 x 10. A limited num-
ber of library functions are available,

While its limitations are severe, those

limitations are far outweighed, for many
purposes, by its handiness. Storage, re-
trieval, and modification of programs are
rapidly affected. MHany of the BRF system's
liabilities appear as assets from a differ-
ent viewpoint: one is denied the freedom to
specify input and output formats, but on
the other hand, one is not required to
-specify them. While the BRF system is a
.unique one, it is somewhat representative
of many of the mini-computers that stand on
the middle ground between the pocket calcu-
lator and the super-computer

With such severe limitations, one can
scarcely afford the luxury of sloppy pro-
graming, One cannot store vast arrays of
numbers, then print out the whole mess at
the end. Instead, one is often forced to
print results as they are generated so that
the storage arrays can be used again. Since
the printing rate is not exactly "fast",
one seldom prints out garbage he doesn't
need. On the other hand, one must some-
times re-calculate a quantity simply be-
cause there is no name left by which to
address it, and no pidgeon hole left in
‘which to store it.

But, when one must resort to tricky
and time-consuming programing to circumvent
the inherent deficiencies of the system, it
is long past time to revert to batch pro-
cessing, or application of a more sophisti-
cated (and perhaps clumsy) interactive sys-
tem. Even under those conditions, it is
often profitable to de-bug subsets of a
large program on a system such as the BRF.

MAGNETIC FIELDS
KINDS OF MAGHETS

The particular kinds of magnets under

consideration are generally cylindrical and

have a large ratio of length to transverse
dimension. The magnetic field is trans-
verse, not axial as in a solenoid. The
winding is placed close to the aperture
where it will have the greatest effect.
Since superconducting magnets have high -,
field strenqths, iron situated near the

aperture would saturate and do little good,

‘side the winding.,

Fig. 1.

Schematic illustration of
coil for a dipole magnet.

so the iron flux return path is placed out-
The quality of the mag-
netic field is dominated by the positioning
of the coils and is only secondarily affect-
ed by the placement and shaping of the iron.
Figure 1 shows, schematically, a winding

for such a magnet and defines the coordinate
system. Such a winding produces a vertical
magnetic field: a "dipole" field, in the
jargon of the trade. Figure 2 shows the
coil structure for a magnet built in our
development laboratory. Figure 3 shows the
pattern of flux lines characteristic of a
quadrupole magnet

Fig. 2. (Coil for sm&ll superconduct-
" ing dipole magnet.



Fig. 3. Cross section of quadrupole
magnet having thin winding with cos 20
_current distribution,

MAGHETIC FIELD REPRESENTATION

The magnet user is concerned with the
characteristics of the magnetic field in
the magnet aperture. The magnetic field
can be represented in several ways. One
representation is a two- or three- dimen-
sional map of the magnetic field vector,
A more useful representation is a map of
the deviation of the local field vector
from some specified ideal field distribu-
tion. Yet another representation -- a
rather fashionable one -- is to express
gither the two-dimensional field, or an
integral form of the three-dimensional
field, by the coefficients of a series.
For a two-dimensional field, this series
takes ‘the form:

B, (ce)-EC.(r/,o) ™sin((n-) 0+ ¢,

1
B](';GJ'E:“ (T/F’) . C-OS[(“-I] O+ax n] ( )

r,8 = coordinates of point at which
field is evaluated,

Bx.By = cartesian components of the
field vector.

p = arbitrary normalizing radius.
a_ = a phase angle.
C_. = "multipole coefficient"; the

magnitude of the field vector .
‘at radius r = p,

FICLD CALCULATION

Usually the magnet user wants a magnet
that produces a pure, say, "quadrupole"
field (n = 2). The allowable aberrations
are usually expressed in terms of the allow-
able values of the multipole coefficients
other than the desired one, Or some combin-
ation of them (such as the sum of the abso-
lute values). To determine the multipole
coefficients of the field, one sometimes
calculates a map of the B vector (or its
scalar or vector potential) and then, using
some fitting technique, determines the mul-
tipole coefficients, More often, multipole
coefficients can be calculated directly. For

‘example, for a single filament perpendicular

to the x,y plane, carrying a current I, and
surrounded by a cylinder of infinitely permea-
ble iron, the multipole coefficients are:

C.- f;'—;!p'“ [+ (a/B)"] d"cos n¢ (2)

where: B ® permeability of free space.
a,p = conductor coordinates.
= radius to the inside of the

b
3 'irOﬂ-

This equation can be integrated analytical-
1y for various simple configurations: for

.example, a thick or thin cylindrical shell

of finite angular extent, having a uniform
current density, or one which varies sinu-
soidally. More often the integration is
performed numerically.

The fields in the end regions of the
magnets are certainly not two dimensional.
However, consider the following integrals
of the field: ]

_.S;B,dz i J-'I_S, dz

where the integration is performed along
lines parallel to the z-axis., It is mathe-
matically legitimate to express such fields
in terms of equations having the form of
Eq. (1) but with the field components re-
placed by the corresponding integrals; the
field integrals are two-dimensional,

Furthermore, Mother Hature has provid-
ed us with a convenient law: the field in-
tegrals bear the same relationship to sim-
ilarly defined current integrals as the
fields bear to the currents in the two-di-
mensional case, The contribution of a

.small current element to the rultipole co-



efficients representing the field integrals

“is obtained simply by replacing I in Eq. (2)

by I dz, where dz is the length of the pro-
Jjection of the current element on the z-
axis. Often the integrals of the three-
dimensional field are of greater interest
to the magnet user than the details of the
field, It is a great convenience to be
able to calculate those integrals directly
using simple two-dimensional methods.

MAGHNET DESIGN
THE PROCEDURE

One can usually adjust some of the
parameters of the coil configuration to
minimize the deviations of the magnetic
field from some desired field distribution,
The desired field distribution is usually
one corresponding to a particular multipole
coefficient --a pure quadrupole field, for
example, The magnitude of all other multi-
pole coefficients is, ideally, zero. One

"design procedure is to adjust the coil

parameters to make a certain number of
multipole coefficients exactly zero. The
number that can be reduced to zero is equal
to the number of parameters that can be
varied.

Let x7,xp,x3 represent the initial
values of three adjustable parameters, and
€y, C2, C3 represent the initial values of
three multipole coefficients that are to
be reduced to zero. (Here, the subscripts
of C are sinply serial numbers, not harmonic
order indexes.) The changes in the multi-
pole coefficients caused by changes in the
values of x may be approximated by three
simultaneous equations of the form

. dC;.  dC ¢
AC, = -C, = a1 50 =
f] g ] Dx'ﬁx. OXIAXI+ ax‘Ax_\ (3)

He solve the set of simultaneous equa-
tions -- or in classier language, we invert
the matrix -- to obtain the values of Ax.
Then as a second approximation we try
values x'j = xj 4 Ax;. (Sir Isaac Newton
knew about” this.) Foﬂtunate]y. the BRF
system's crowning glory is a matrix inver-
sion subroutine,

For two-dimensional fields, we adjust
the coil positions, in the x,y plane, or
the currents. e can also adjust the len-
gths of the coil elenents to reduce certain
multipole coefficients of the field inte-
grals to zero. In the latter case, the '
equations are linear, so the solution is

obtained upon the first iteration. Occa-
sionally, however, the mathematical "solu-
tion" requires coil sections that overlap.

Arl_APPLICATION

Figure 4 shows the cross section of a
magnet having coils in the form of rectan-
gular blocks of conductors. A quadrupole
magnet is 1llustrated, but the program is
applicable to multipole magnets of any
order.

Fig. 4. Cross section of ane-pale—ef
a quadrupole magnet, a preliminary
design for ESCAR.

The initial configuration is an approx-
imation to a known ideal one. We will hold
the positions of the larger current blocks
fixed and change the angular positions of
the other blocks, in symmetrical fashion,
according to the iterative procedure out-
lined earlier. The program will work for
at least 10 current blocks per half pole,

The conductors of real magnets are not
infinitesimal filaments, of course, but for
the purpose at hand the finite conductor
may be represented adequately by a single
filament or, at most, a few filaments,



Such ragnets often have the type of ‘where I1 is summed over one member of

symmetry illustrated in Fig. 5. For a set each symmetrical pair, and Iy is summed
of filaments arranged with the kind of over each filament lying on the block
symmetry shown, Eq. (2) yields: centerline. HNow, when a block is moved,

all that changes is cos nf; the time-con-
— - suming summation remains unchanged.

Co= 511‘;“—'[p *[1+@/b)™) a"cos ng :

I The BRF program that performs the
forn-wm(y3,s,..), and L calculation is described in the Appendix.
An example of its application -- a quadru-
pole magnet for the ESCAR ring -~ is pre-
. : sented. In this particular application
where m is the number of pole pairs. S0,  tpe total memory used for all simple var-

Cu=O for nam(1,3.5,...)

by calculation of the multipole coeffi- iables, all subscripted variables, and all
cients for the conductors associated with constants built into the program is about
one-half of one pole, we obtain the field 300 words, and most of those are associated
characteristics for the entire magnet. i with the calculation of up to 15 multipole

coefficients for the final design after the
block positions have been optimized.

N
DO

APPENDIX

The program illustrated applies to the
S (23] ® s kind of magnet shown in cross section in
e A Fig. 4. The program is applicable to mag-
©® / @ nets having any number of pole pairs and
i .any number of coil rectangles.
M The program varies the angular posi-
~U® tions of -all of the conductor rectangles
\\\\‘N associated with a half pole except one, in
© order to reduce certain multipole coeffi-
M Ko .cients of the field to zero. Then the pro-
-gram calculates the angular positions of
S the inner corners of the coil rectangles
.to indicate whether the "solution" requires
rectangles that overlap.

N
© .~
N B

Fig. 5. Sextupole array of current
filaments, one filament per half pole,
having "folding" symmetry.

At this point we would be tempted
simply to calculate the contribution of
each filament in each current block to each
multipole coefficient, then add them. Each
iteration of the calculation, after each
block is moved a small amount, would re-
quire a complete recalculation.

However, there are computional and
conceptual advantages to representing the
angle ¢ as the sum of two angles, o and 6,
where 6 is the position of a reference line
for each block, and @ is the angle of the
filament from the reference line, For a
block of filaments having a radial center=-
line, as in the present case, there are
further advantages to letting the center-
line be the reference line. The final form
is:

G, 4mu,l PM;E [1+{a/8)*"a"cos na (5)

w Fig. 6. Nomenelature for i-th current

o% Elh@/b)‘"la"‘lcosﬂ@ block as used in the BRF program.
[



NOMENCLATURE (See Fig. 6)

Input Data

NHARM Number of multipole coefficients
to be determined

THETA(I) Initial angle of block centerline’
DCON Depth of Conductor

WCON Width of conductor

ND(1) Depth of block in units of DCON

U 1 PSP B, B .« ok e - iy .

PROGRAM LIST

# HAF PHROGRAM RBMIY1sHE!SER.
¢ MULTIPOLE MAGNETSs FLAT-BITTOM PNHALLEL=SIDED CURRENT
DLOCKS. FINITE CONDUCTOR DIMENSIONSs ITERATES TO FIND
BEST BLOCK CENTER ANGLES.
UNITS -
PRESET UNITS AHE DEGHEE. AMPe.» TESLA.
FAQR HMETEHSa ENTER SCALE=1.0
FOR CENTIMETERS, ENTEH SCALE=0.01«
FOH INCHES. ENTEM SCALE=P.0E54
DIMENSIONS OF AR AND BB MUST BE ONE LESS THAN NUMBEH
OF CUHHENT BLOCKS.
99004840+ TIH{HEE BLOCKS®esesssane
NDLK=3
DIMENSION AA(Q.R),DBHC(R) (‘;_.CBP‘NE‘E
DIMENSION NW(3),ND(3),5UMC3,10), THETA(D) D".‘}-EQE,,JT

serasaBER

DIMENSION C(3.10).DbC(3,10),CCC1@)

KEAD» DCON » WCON» CUR» SCALE %UMBE': oF
KEAU» RIN+ RNORM» HI HONSNPALR LOUKA,
PRINT» DCON»WCON» CURs SCALE

PRINT: RIN+ RNOHM» RIKON,NPALR INPUT DATA IS

CNST=(1.6E=06)eNPAl HeCUR/SCALE EMNTERED AND

PLAYED BACK,

READ» THETA

NW(I) Width of block in units of WCON %'  Renc.iiama \
READsND
READ,NW JUMPS TO HERE uRon

RIN Inside radius of coils

CUR Current in cach conductor

SCALE Scaling factor, see program list
RNORM Arbitrary normalizing radius, p

NPAIR Number of pairs of poles, m
Output Data
THETA(I) Final angle of block centerline

NITER Humber of iterations

cc(1) Multipole coefficient of order
HPAIR, CI“.’I

cc(I) Normalized multipole coefficient,
Cn/Chs n = 21-1

ALF Angular coordinate of inner cor-
ner of block

C“ - 4_",::“.!.[.. pnq{}: [l*(ﬂ/kﬂ"]ﬂ'"cos nou
| +3 Ll@/o) l"]ct'"]cos no

CNST FEFAC

v

SUM

c(1,1)

off DD 21 NITEH=1,80 \
DO 20 I=1.NBLK ]

i
PRINT»NDs NW» THETA COMPLETION,

DO 9" L=1l.NHARM =
D0 9 [=1,9BLK MOREINPUT DATA AND

2 INSTANT REPLAY.
T i THIS 1% THE DATA MOST
DO 18 I=1,NBLK — ———————— LIKLEL TO BE CHAKNGED
K=RIN=0.5+DCON UPON SURSEQUENT
LIM=NDCL) EXECUTIONS,.
DO 18 JelsLIN
X=X+DCON
LIMI=NWCI)/R
Y=(NVCI2+11eUCON®0.5
DO 12 K=l,LIML
Y=¥=VCON e PETERAMINES THE
RR=SORT(X*X/YeY) PROPERTIES OF EACH
ALF=ASINCYZRR) PLOCK WITH LE<PECT
f———D0 12 L=l,NHARM ITS5 OWMN CENTERLIWE !
N=(2¢L=-1)*NPALR THE MAIN SUMMATION),
FEFAC=1.0+CHR/RIRINI*#( 243}
SUM( 4L Y=SUHC T4 L)+FEFACSCOS(N®ALF ) /RR® &N
Lie CONTINUE i
IFCABSC(Y=-UWCIN)-GT«1.8E-@6) GJ TO
DO 14 L=i,NHARM

=

JUM [F% TO TERMI~
N=(2¢L-1)8NPAIR NATOR |F MW 15 EVER,
FEFACal+8+(X/RIKON)#e(2eN) OTHERWISE ADBDs
SUMCLL)I=SUNC L, L) +0.S¢FEFAC/XeeN PLOPELTIES OF ELEMENTS
14 CONTINUE ON BLocw CENTERLINE .
1] CONTINUE

ARG=THETACI)*PL/1E0.0

$——D0 20 L=1.NHARM
N=(@sL=1)eNPALR

- CCCuCHSTOHNOKM*e(N=1)eSUMCI.L)
C(1:L)=CCCsCOSIN*ARG)
DCCIs1.)==N*CCC®SIN(N*ARG? —

-2a CONTINUE

b0 28 Lwl,NHARM
| CC(LY=0.8
ed CONTINUE
DO 38 I=lsNBLK MTERRTION
p——D0 3@ L=1,NHARM LOOP...

P
|_ CCLL)I=CG(LI+C(1,L) — TOTAL C FOR ALLBLOCHKS, | TWIENTY
3e CONTINUE

\
IFCABS(CC(2)) LT« (1+BE-18))G0 TO 42 ps(_g\)'w.
DO 25 L=8,NBLK ()

BB(L=1)s=CC(L) JUMPS OUT UPON CONVERGENCE,

D3 (23 Au2sNBLIC A SIMPLE BUT ADEOUATE
AACL=1,1-1)=DCCIsL) CRITERION .
CUNTINUE

CALL SLV(AA.X.BB) MATRIX INVERSION, SOLWTION| IS BB,
D0 26 L=2.NBLK
THETACL)=THETACL)+BB(L=1)+180.8/P1

C, OF BLOCK 1

DC. /26,

-25

[ PRINTsALF
Qa CONTINUE

-26 CONTINUE
el CONTINUE

42 CONTINUE ’TE“T‘OMs ( o
PRINT#NITER — |

PRINT.THETA — FINAL ANGLES CRASHES IF T

PRINTACCC 1) — FUM DAMEM TAL COEF, PWERGES.

DO 55 L=l,NHARM

Lss CC(L)=CC(LI/CC(L)

—4 IF{ABS(THETA(L))«GT«(90.8/NPAlK})GO TO p

CONTINUE
PRINT.CC NORMALIZED COEFFICIENTS,
DO 4@ 1wl,NBLK
| XeNW( 1) *WCG:ie@-5
Y=ATAN"{XsRIN)*180.0/P1
Al FuTHETA(L ) =Y

T aLe ANGLES OoF |NSIDE
R T

TAKE ANOTHER WHACK AT 1T.., TRY
PIFFERENT 'rH;TAwwoR DIFFERENT
L

G0 TO 1
VALUES fFolkh ND oRr



OuUTPUT

tXEQ!

BEGIN XEQ

ENTERe«se DCON» WCONs CURs, SCALE,»

«062, 03455008, 082541

ENTERe«« RIN» RNORM» RIRON, NPAIR»

3eB8,24662643,2!1 — CONDUCTOR ‘5‘26" w FOR INCHE S,
DCON= B.062 VWCON= B.B34 CUR= 500.0 SCALE= 0.0254
RIN= 3.8 RNORM= .66 RIRON= 63 NPAIR= 2.0

ENTER«+« NHARM, “\(J R NFOR QUADRUPOLE
101 IN%I0E RAD, MAG DE.T.
ENTEReess ND»

8+8,8!

ENTEReese Ni»

32,16,681

ENTEReee THETA» .
8.32,22, 33! _ LAVERS AND TURNS ER
ND 8.000000 8.0200080 8.006600 1.5 LAVER 0N EACH RLOCK .

NW 32.00000 16.00009 8.008000
THETA 8.320000 22.00800 33.02000— STARTING ANGLES.

NITER= 5.0 . ITEGATIONS.

THETA 8.328000 22.66234 34.14813— FINAL ANGLE S.

CCC1)= 2.13561376 FUNDAMENTAL MPOLE coEefF.

CC 1.000038 =A.44E=16 =1.115-16 =1.74E-04 -4.293-@5}1

CC =3.49E~05 =2.41E-05 6+065-06 2.90E-07 -2.59E-07 NORZMALIZED
ALF= (.17301118 M’POLE COEFS.
ALF= 16.4669888}1(?1— BLOCk : _
ALF= 18.5681528

g 26.75653@5} 200 RLOCK INSIDE CORNER ANGLES,

ALF= 32.9934174}%39 PHEW! No oveRr LAPS!

ALF= 36.1978393
ENFERwas HAWENY ., T PN B8 AT AQP\IM-,




